SOUVENIR PROGRAMME 50p

Oliver's Mount Scarborough INTERNATIONAL ROAD RACES

Saturday & Sunday 19th & 20th April 1980

FOR CONDITIONS OF ADMISSION SEE INSIDE

AWARD WINNING DEALERS

MOTORCYCLE CENTRE

HONDA - KAWASAKI YAMAHA - SUZUKI MZ - MOTO-GUZZI TRIUMPH

SHELL GARAGE SHOWROOM 217 KIRKSTALL ROAD · LEEDS 4

TEL. 468895 or 35788

SPRING INTERNATIONAL

MOTOR CYCLE ROAD RACES

MO DOGS WILL BE ALLOWED NO THE CINCUIT ON THE STRAIN OF THE STRAIN ON TH

OLIVER'S MOUNT CIRCUIT SCARBOROUGH

WITH THE

MOTOR CYCLE WEEKLY/FORWARD TRUST
BRITISH TT FORMULA 1 CHAMPIONSHIP

Permit No. ACU 431

PCL 11

The meeting will be held under the International Sporting Code of the F.I.M. and the General Competition Rules of the Auto Cycle Union (Tenth Edition).

er.e.e dam 34.70 ep.10 organised by

THE SCARBOROUGH & DISTRICT MOTOR CLUB LIMITED
NORTH EAST MOTOR CYCLE RACING CLUB
AND

AUTO 66 CLUB

Financial Controllers: SCARBOROUGH RACING CIRCUITS LIMITED

WARNING

MOTOR RACING IS DANGEROUS AND PERSONS ATTENDING THIS MEETING DO SO ENTIRELY AT THEIR OWN RISK

It is a condition of admission that all persons having any connection with the promotion and/or organisation and/or conduct of the meeting, including the owners of the land and the drivers and owners of the vehicles, are absolved from all liability arising out of accidents, however caused, resulting in damage and/or personal injury to spectators.

NO DOGS WILL BE ALLOWED ON THE CIRCUIT ON LEASH OR OTHERWISE, and any person found with a dog will be ordered from the circuit and their money will be returned.

IMPORTANT INFORMATION TO MOTORISTS AND SPECTATORS

If all drivers of vehicles will make themselves fully conversant before they leave the car park with their particular exit, and follow the route as indicated, the least possible delay should take place in getting you on to the main road bound for your destination. We wish you a trouble-free and safe journey, and if you have enjoyed the racing, don't forget to come again - tell your friends -Scarborough welcomes you. Thank you.

COURSE LAP RECORDS

Class	Rider	Machine	Time	Speed	Date
125 cc	Bam Carlson	MBA	2m 01.6s	71.46 mph	9.9.79
250 cc	Graeme McGregor	Yamaha	1m 54.2s	76.09 mph	9.9.79
350 cc	Steve Tonkin	Pratt Yamaha	1m 51.0s	78.28 mph	9.9.79
500 cc	Barry Sheene	Suzuki	1m 48.9s	79.79 mph	9.9.79
750 cc	Barry Sheene	Suzuki	1m 47.2s	81.05 mph	9.9.79
Sidecar	Dick Greasley John Parkins	Busch Yamaha	1m 53.8s	76.37 mph	9.9.79
TT Formula 1	Roger Marshall	Honda	1m 48.8s	79.86 mph	9.9.79

OFFICIALS

CLERK OF THE COURSE: P. Hillaby

Assistant: T. Skelton

A.C.U. STEWARD: L. Ellis

EAST YORKSHIRE CENTRE STEWARDS: J. Rhodes and A. Bell

CLUB STEWARDS: S. Binns and J. Sherburn

SAFETY OFFICER: C. Hannon CHIEF OBSERVER: L. M. Porritt

RACE CONTROLLER: P. Race

Assistant: D. Deaves CHIEF MARSHAL: D. Kitching

Assistant Chief Marshal: R. Burdis

CHIEF SCRUTINEER: F. Boak

Assistant Chief Scrutineer: W. Clark CHIEF PADDOCK MARSHAL: S. Nolan

CHIEF HOLDING BAY MARSHAL: G. Jackson

CHIEF START LINE MARSHAL: A. Slater

TRAVELLING COURSE MARSHAL: F. Cowton

SECTION I/C MARSHALS: P. Brewis, R. Wyles, P. Drury, M. Hall, T. Watson, D. Winn

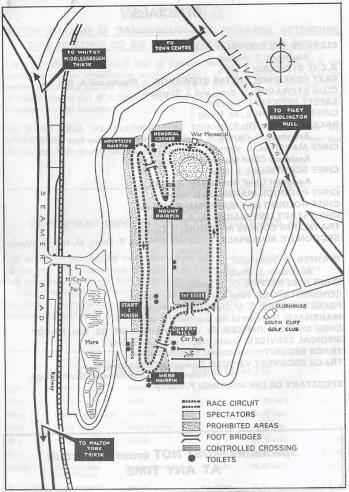
STARTER: C. Williamson

Assistant: J. Sherburn CHIEF TIME KEEPER: Dr. L. Jamieson

COMMENTATORS: Peter Kneale and Ben Form

PRESS OFFICERS: S. M. Dennis and D. Parkinson

MARSHALS: Members of the organising Clubs


CHIEF MEDICAL OFFICER: Dr. W. V. Anderson, MB, BS, BSc, MRCGP

MEDICAL SERVICES: Scarborough Red Cross Society TRACK SECURITY: Humberside Security Services

TRACK RECOVERY VEHICLE: Dowsons of Scarborough,
Peters of Hull, and Kawasaki Scarborough

SECRETARY OF THE MEETING: P. Hillaby

Spectators MUST NOT cross the circuit AT ANY TIME

LIST OF SOLO COMPETITORS AND ENTRANTS

No.	Name (Entrant)	Town/Country	No.	Name (Entrant)	Town/Country
2	S. MANSHIP	Leicester	30	B. CARLSON	Sweden
-	(Robinson Racing/Tea		31	B. MURRAY	Stockport
3	B. SMITH (Marmac Racing)	St. Helens	32	C. MORTIMER	Reading
4	G. CROSBY (Texaco Heron Team S	Australia Suzuki)		J. PACE (Derry's Racing)	Heston
5	R. MAMOLA (Texaco Heron Team S	U.S.A.	34	C. HORTON (Team Appleby Glade)	
6	S. PARRISH	Royston	35	S. WARD (D. & K. Carlisle Eng.)	Leeds Albion St. Mtrs
7	B. SHEENE	Charlwood	36	P. SKOLD	Sweden
8	(Team Akai) D. POTTER	Orpington	37	D. CHATTERTON (Chatterton's Motors)	Boston
	(Team Mitsui Yamaha)		38	P. ROUSSELL	France
9	A. GEORGE (Honda Britain Racing	London Team)	39	T. RUTTER (Sid Griffiths Racing)	Brierley Hill
10	M. GRANT (Honda Britain Racing	Huddersfield Team)	40	J. BACKSTROM	Sweden
11	R. MARSHALL (George Beale/Team (Wragby	41	P. MELLOR (Granby Motors/Denb	
12		West Kingsdown	42	T. POHJOLA	Finland
14	J. SAYLE (George Beale/Team (Melbourne Castrol)	43	M. IWASAKI (Texaco Heron Team S	Croydon Suzuki)
15	S. TONKIN (Denis Pratt/Team Car	Carnforth	44	A. STEWART (Robin Mortimer Racin	Guisborough
16	K. HUEWEN (Len Manchester Moto	Wollaston prcycles Ltd.)	45	N. TUXWORTH (Honda Lincs.)	Louth
17	G. McGREGOR (George Beale/Team (Melbourne Castrol)	46	T. ROGERS (Gillards/Kass Constru	
18	C. WILLIAMS (Team Mitsui Yamaha	Alvanley	47	P. HENDERSON (J. M. L. Henderson T	
19	E. HYVARINEN	Finland	48	J. WEBB	Middlesbrough
20	G. PRETTY	Camberley		(Frank Godfrey T.V. A	erials)
21	D. DEAN (Team Mitsui Yamaha	Wigan	49	C. GUY (Jeff Brett Racing)	London
22	S. HENSHAW (Harold Coppock/Tea	Jacksdale m Castrol)	50	T. HEAD (Team Castrol/Devime	Coventry ead)
23	D. IRELAND (Derry's Racing)	Heston	51 301	M. CHATTERTON (Garners of Barnsley)	Barnsley
24	B. GRANATH (Tranemo Farg AB/Ny	Sweden	52	J. HESELWOOD (Warwicks Motorcycle	Heywood s)
25	G. YOUNG (Irish Racing Motorcy)	Belfast	53	B. JACKSON (John Clucas)	Kendal
26	B. SMITH	Australia	54	B. WOODLAND	Northwood
100	(Jack Walters, Austra	lia)	55	D. McLEOD	Forth
27	L. BACKSTROM	Sweden	56	P. BANKS	Morpeth
28	L. JOHANSSON	Sweden		(North East Motorcycle	
29	G. LINGHAM (Derry's Racing)	London	57	N. ROWLES (Queen's Park Motors)	Bury

tus

		I CIPCA GMUI	No.	. Name (Entrant)	
	P. WILD (Handsworth Motorcyc	Claycross cles)	84	B. BOWMAN (W.L.T. Motorcycles	Lancaster '
59	I. BELL	Bedlington	85	D. BROWN	Rochdale
		Pailton	DM 12653F	(Paul Johnson Motor	B. Bitti Hall
	(Oxford Fairings Ltd.)		86	P. WILLIS	Newbury
	A. MOYCE (Oxford Fairings Ltd.)	Waltham Cross	87	G. MARRIOTT (Fred Marriott Motor	Birkenhead cycles)
	B. ROBERTSON (Darling & Swinney M	Alnwick	88	G. BROWN	Inverness
		Leicester	89	C. THORNE	Batley
	M. HUNT (Oxford Fairings Ltd.)		90	M. ELLIOTT	London
64	M. JAMES (Hands Accessories Lt	Thetford	91	C. LEAH (Maldon Contractors	Bolton Ltd.)
65	B. ROBSON	Malton	92	S. BUCKMASTER	Barnet
	F. RAW	Oswaldtwistle		(South London Moto	orcycles)
	D. GUEST	Penistone	93	T. HARRIS	Sandwich
	A. MYERS	Hull		(Geoff Daryn Motorcy	
69	B. CLARK (P.M.H. Promotions L	Hull td.)	-94	P. ODLIN (Luke Chutes)	LIANSHAM R
70	S. BOYES (P.M.H. Promotions L	York	95	B. HILL (Luke Chutes)	Louth
	D. GALLAGHER	Glasgow	96	L. GARDNER	Sheffield
72	A. McGLADDERY (Ernest Jackson Demo	Darlington lition)	97	D. VALE (Egabourne Profiles L	Worcester td.)
	J. KERNAN	Manchester	98	G. ATHA	Doncaster
74	P. HUBBARD	Lincoln	99	S. ROSSI	Finland
75	A. BOND (East Anglian Reclama	Lowestoft tion Ltd.)	100	P. CLIFFORD (Motor Cycle Weekly	Sutton
76	B. INGHAM (Turnell Car Hire)	Preston	101	I. HOGG (Thos. B. Oliver Moto	East Linton
77	R. CHRISTMAS (H. D. Rawlings & Co	Stevenage . Ltd.)	102	T. NATION	Stockbridge
78	T. SMITH	Leicester	103	R. SWANN	Kensworth
79	A. BEDFORD	Burton-on-Trent		(Bennetts of Barnsley	
80	D. BEDLINGTON	Beverley	104	B. FROST (Ron Parkinson/Tear	Colchester
81	D. NOBBS	Bingley	40-		
82	P. HOWARTH	Derby	105	P. NICHOLLS	Leyland
83	D. CONNELL	Castleford	106	M. BOOYS	(London ymad)
	(Seniors Motorcycles)		107	J. WEEDEN	Leicester
			108	G. FOGGARTY	Blackburn

LIST OF SIDECAR COMPETITORS AND ENTRANTS

No.	Driver/Passenger and Entrant	Town/Country
2	D. GRASLEY/J. PARKINS (Brian Bardsley Spares Ltd.)	Stafford
3	D. SAVILLE/S. BIRCHALL (Sabre Racing Ltd.)	Retford
4	N. ROLLASON/D. HOMER (Brian Bardsley Spares Ltd.)	Solihull
5	S. SINNOTT/D. HALL	Crowland
6	S. PEARSON/G. ROSE	Huddersfield
7	G. NOTTINGHAM/S. JOHNSON (Brian Lee Racing)	Wragby
8	F. ILLINGWORTH/G. MILLER	Ossett
9	B. WEBB/C. BOOKER (Ray Hamelton Motorcycles)	Doncaster
10	M. WHITE/P. SPENDLOVE (Staiano Motorcycles)	Harrogate
11	D. BINGHAM/J. BINGHAM (Jack Randall)	Newark
12	E. WRIGHT/P. CRAIG (Eddy's Motorcycle Centre)	Ledston
14	J. WATSON/B. HOYLE (Eddy's Motorcycle Centre)	Leeds
15	J. NORBURY/B. WRIGHT (Lockside Motorcycles)	Castleford
16	D. HALLAM/J. HAVERCROFT	Leicester
17	B. HALL/P. MINION (Granby Motors)	Derby
18	F. CORNBILL/K. CORNBILL	Blaydon-on-Tyne
19	M. HARVEY/B. ALFLATT (R. H. Rooke)	Goole
20	M. BURCOMBE/D. RUMBLE	Bristol
21	R. TOWSE/M. WOODS	Market Weighton
22	M. AMES/R. NORBURY (Lockside Motorcycles)	Leeds
23	S. WEST/C. WILBRAHAM	Beverely
24		Leeds

OF SCARBOROUGH

SALES Most models in stock — Honda, Suzuki, Yamaha, BMW, Triumph, MZ, Vespa, Laverda and Reliant 3 and 4 wheelers. Plus fine choice of quality used machines — all with written guarantee.

NO DEPOSIT TERMS AVAILABLE (Can include insurance, tax, accessories, etc.) * TOP PART EXCHANGES ON MOTORCYCLES, CARS AND THREE-WHEELERS * or, if you have no trade in we offer excellent discounts

ACCESSORIES Call at our famous 'Bike Bar' — huge range of items from helmets, carriers, fairings, top boxes, bike care items, leathers, jackets, badges and many gift ideas for the 2-wheel enthusiast.

SPARES Large stocks of spares for Honda Yamaha Suzuki RMW and Reliant.

SPARES Large stocks of spares for Honda, Yamaha, Suzuki, BMW and Reliant. COD parts service — Write or call for that elusive part! We will do our best to get it!

SERVICING We pride ourselves on one of the best service departments for all types of work — Servicing, tuning, wheel building, reboring and MOT testing. Same day servicing — Ring or call for a quick booking. Factory-trained mechanics — WE TAKE CARE OF YOUR BIKE!

13/17 NORTH MARINE ROAD - SCARBOROUGH
Telephone 0723 66541
OPEN 9 AM TO 6 PM EVERY DAY EXCEPT SUNDAY

Welcome to the . . . Scarborough Spring International

Oliver's Mount makes history this year by staging an April International and to mark the occasion the organisers have assembled perhaps the best ever entry for a Scarborough meeting.

No home International would be complete without Barry Sheene and once again the hard working organisers have managed to lure Barry to the Yorkshire track where in the past he has proved unbeatable.

But this year he faces one of his strongest challenges in a long time — with the depth of talent on show this weekend.

In addition to the hardy annuals like Mick Grant, Roger Marshall and Steve Manship there is a new crop of Scarborough masters, spearheaded by New Zealander Graeme Crosby who impressed here so much at last year's International.

Then, riding his sit-up-and-beg Kawasaki, Graeme finished his debut ride in third spot behind Roger Marshall and Mick Grant, but he left a lasting impression on Scarborough fans. This time he is back with the Texaco Heron Suzuki's and so anything can happen.

With Graeme, subject to a look around the course before practice got under way, is his team-mate Randy Mamola and what an exciting prospect that is. The last American to ride here, Pat Hennen, got to grips with the circuit at no time at all and Randy is an equally exciting prospect.

But perhaps the most devastating debut we have seen at this circuit in recent years was that of Australian Graeme McGregor who pulverised the 250 lap record in September last year.

He won the Motorcycle Racing/Vladivar 250 Championship round easily and broke the lap record on almost every lap before leaving it in tatters for the coming International. What is interesting about his record-breaking run last year is that he wasn't pushed at all on the way to the chequered flag.

Unfortunately, race favourite, Charlie Williams broke his wrist in a training accident and had to sit out the race. This time there will be a real battle to prove who really is the 250 King of Oliver's Mount.

This year McGregor moves into the Blue Ribbon 500cc class on George Beale's 500 Yamaha. Already he has shown how easily he can adapt from one machine to another and he could pull off a surprise in the 500 race combining his knowledge and flair on the circuit with a growing confidence on the bigger machine.

Perhaps the most important race of the weekend is the opening round of the Motor Cycle Weekly/Forward Trust TT Formula 1 Championship, which without saying will be the best series since the Competition was introduced to our Calendar.

It will be better because in 1980 more influential teams are involved, much to the delight of the Formula's creator Mr. Vernon Cooper, Chairman of the ACU's Road Race Committee.

In addition to the Hondas, which have had it all their own way so far, we have the powerful Pops! Yoshimura Suzukis, flown in earlier this month from Japan for the Championship.

I had the benefit of seeing these machines at Daytona, albeit with un-restricted engines in them, and they are going to push Honda to the limit, especially with Crosby and Mamola on board.

Their opposition is headed by the ever-popular Mick Grant, partnered on the official Works Hondas at Scarborough by TT hero Alex George. They too have new machines from Japan, but the battle will not only revolve around these four stars.

An attack from the private sector comes from George Beale's runners Roger Marshall, who recorded that superb victory here last year against Grant and Crosby, and Formula 1 newcomer Graeme McGregor. Barry Ditchburn tries his hand this year on a Moriwaki Kawasaki.

Marshall's capabilities go without saying and training reports tell us that McGregor has taken to his Peter McNab prepared Honda, with a works engine and backing from Granby Motors, like a duck to water.

But the TT Formula 1 event is just one of a packed programme of events. Topping the bill of course is the 1000cc race in which all of this weekend's major stars parade.

Barry Sheene must begin favourite after his record here in recent years, with Grant, Marshall, McGregor, Manship, current Motor Cycle News/Duckhams Superbike Champion Dave Potter, Steve Parrish, Alex George and Australian newcomer to Scarborough Jeff Sayle all in the field you are in for an electrifying race.

Many of the 1000cc stars go in the 500 event but one rider I must end with a few lines on is Yorkshireman Steve Ward who came so close to glory here last September when he gave Barry Sheene such a hard time.

ANDREW McKINNON, Motor Cycle News

Kawasaki Scarborough

Accessories
Clothing
Spares

Full range of Kawasaki Moto Cross and Montessa Trials Bikes in stock

Wide choice of keenly priced, sound used bikes — all sizes FIRST-CLASS BACK-UP SERVICE

HOXTON ROAD - SCARBOROUGH

Telephone 73851 or 69986

HEADLAMP FAIRING

Fits most machines of 125cc and over with standard handlebs

See class

T2 700 STYLE YAMAHA FAIRING Fits RD 250cc, 350cc, 400cc and most earlier models. Requires lowered bars. Can be supplied for standard footrests or rear seats. Complete with fittings. Clear or tinted screens.

COLLINGDON ROAD, HIGH SPEN, ROWLANDS GILL, TYNE & WEAR

Race 1

12.00 pm

INTERNATIONAL LIGHTWEIGH

Event

Heat 1

Laps

EAG	ent Z	Heat 1	6 Laps
	The fastest 24 rider	rs over both heats to qualif	y for Final
No.	. Name	Machine	
15	STEVE TONKIN	250 Pratt Cotton	
18	CHARLIE WILLIAMS	247 Yamaha	
22	STEVE HENSHAW	249 Coppock Yamaha	
26	BARRY SMITH	249 Yamaha	S GRAHAM YOUNG
28	LARS JOHANSSON	247 Yamaha	2nd
31	BERNARD MURRAY	248 Maxton Yamaha	// 3rd
33	JOHN PACE	249 Yamaha	93 / 4th
37	DEREK CHATTERTON	249 Chat Yamaha	5th6th
39	TONY RUTTER	248 Cotton	7th
44	ALAN STEWART	247 TT Yamaha	322U 8th
46	TONY ROGERS	247 Yamaha	Fastest Lap:
50	TONY HEAD	249 Yamaha	Rider
53	BOB JACKSON	249 Yamaha	Time mph
55	DONNIE McLEOD	249 Yamaha	Winner's Time:
62		247 JD Tarriana	AL BARRY WOODLAN
66	FRANK RAW	247 Yamaha	Speed mph
68		249 Yamaha	
72	ANDY McGLADDERY	250 Yamaha	
75	ANDY BOND	249 Yamaha	
77	ROGER CHRISTMAS	247 Yamaha	
84	BILL BOWMAN	247 WLT Yamaha	BILL INGHAM
88	GORDON BROWN	248 Spondon Yamaha	
92	SIMON BUCKMASTER	247 NLM Yamaha	
101	IAN HOGG	249 Yamaha	
107	*JOHN WEEDEN	250 Yamaha	

* Denotes Reserve

Race 2

12.20 pm

The fastest 24 riders over both heats to qualify for Final

No.	Name	Machine	
17	GRAEME McGREGOR	250 Yamaha	
19	EERO HYVARINEN	247 Yamaha	
25	GRAHAM YOUNG	247 Yamaha	
27	LENNART BACKSTROM	247 Yamaha	1st
30	BAM CARLSON	250 Yamaha	ABBU 3rd
32	CHAS MORTIMER	250 Cotton	4th,4514HGLSE
34	CLIVE HORTON	248 Cotton	5th
36	PETER SKOLD	247 Yamaha	6th
38	PHILIPPE ROUSSELL	250 Yamaha	7th
41	PHIL MELLOR	247 Bartol Maxton	Fastest Lap:
45	NEIL TUXWORTH	248 Yamaha	Rider
48	JOHN WEBB	246 TV Yamaha	MOTIME ALL BOB Ea
51	MICK CHATTERTON	247 Maxton Yamaha	Speed mph
54	BARRY WOODLAND	249 Yamaha	Winner's Time:
58	PETE WILD	249 Handsworth Yam	aha Speedmph
65	BRYAN ROBSON	247 Harris Yamaha	68 TONY MYERS
67	DAVE GUEST	247 Yamaha	
69	BILL CLARK	247 Yamaha	
74	PETER HUBBARD	249 Yamaha	
76	BILL INGHAM	250 Cotton	
78	TONY SMITH	247 Yamaha	
87	GLYN MARRIOTT	247 Yamaha	
91	CHRIS LEAH	247 Yamaha	
98	GRAHAM ATHA	247 Yamaha	
	*MIKE BOOYS	248 Yamaha	

Race 3

8 Laps

13

INTERNATIONAL SENIOR **Event 4**

-		ED A JULIA	A GRADULE
No.	Name	Machine	No. Name 12.5
2	STEVE MANSHIP	500 Suzuki	
3	BOB SMITH	500 Suzuki	
6	STEVE PARRISH	500 Suzuki	
7	BARRY SHEENE	500 Yamaha	
8	DAVE POTTER Brisms	500 Yamaha	1st£150
9	ALEX GEORGE	500 Hermetite Cagiva	2nd£100
10	MICK GRANT	500 Suzuki	3rd£70
11	ROGER MARSHALL	500 Yamaha	4th£50
14	JEFF SAYLE	500 Yamaha	6th£30
15	STEVE TONKIN	352 Pratt Yamaha	7th£20
16	KEITH HUEWEN	500 Yamaha	8th£10
17	GRAEME McGREGOR	500 Yamaha	Fastest Lap:
22	STEVE HENSHAW	489 Coppock Suzuki	Rider
23	DENNIS IRELAND	497 Suzuki	Time
24	BO GRANATH	496 Suzuki	Speedmph
27	LENNART BACKSTROM	497 Suzuki	Winner's Time:
28	LARS JOHANSSON	498 Suzuki	Speedmph
29	*GARY LINGHAM	497 Suzuki	Speed
35	STEVE WARD	497 Suzuki	
36	PETER SKOLD	497 Suzuki	
37	*DEREK CHATTERTON	500 Suzuki	
41	PHIL MELLOR	492 Suzuki	
42	TIMO POHJOLA	500 Suzuki	
43	*MASARU IWASAKI	497 Suzuki	
47	PHIL HENDERSON SASTINE	497 Suzuki	
48	JOHN WEBB	497 TV Suzuki	
52	*JOHN HESELWOOD	495 Suzuki	
54	*BARRY WOODLAND	498 Suzuki	
88	*GORDON BROWN	496 Suzuki	
99	SEPPO ROSSI	500 Suzuki	GOFF WILBRAHA
08	*GEORGE FOGGARTY	500 Suzuki	* Denotes Reserve

Race 4

1.15 pm

INTERNATIONAL SIDECAR

Event 7		First Leg	8 Laps
No	. Name	Machine	No. Name
2	DICK GREASLEY JOHN PARKINS	750 Bardsley Yamaha	
3	DAVE SAVILLE	750 Sabre Yamaha	
4	SIMON BIRCHALL NIGEL ROLLASON	750 Barton Phoenix	
5	DAVE HOMER STEVE SINNOTT DAVE HALL	700 Marksin Yamaha	
6	STEWART PEARSON GRAHAME ROSE	750 Yamaha	1st £100 2nd £75
7	GORDON NOTTINGHAM	700 Lee Yamaha	3rd£50 4th£40
8	STEVE JOHNSON FRANK ILLINGWORTH	750 Yamaha	5th£20
9	GUY MILLER BRIAN WEBB	700 Ham Yamaha	6th£10
10	COLIN BOOKER MAL WHITE PHIL SPENDLOVE	750 Rumbold Yamaha	Rider
11	DENNIS BINGHAM JULIA BINGHAM	700 Yamaha	Speed mph
12	EDDY WRIGHT PAUL CRAIG	750 Yamaha	Winner's Time:
14	JOHN WATSON BRIAN HOYLE	750 Yamaha	Speed mph
15	*JIM NORBURY BERNIE WRIGHT	700 Windle Yamaha	29 *GARY LINGHAM
16	*DAVE HALLAM JOHN HAVERCROFT	750 Windle Yamaha	The fastest drivers over both legs will also receive —
17	*BILL HALL PETER MINION	750 Granby Yamaha	1st £100, 2nd £75, 3rd £50
18	*FRED CORNBILL KEITH CORNBILL	638 Parker Suzuki	
19	*MICK HARVEY BRIAN ALFLATT	700 Yamaha	
20	*MICK BURCOMBE DEREK RUMBLE Jnr	700 Rumble Yamaha	
21	*RAY TOWSE	750 Rumble Euroyam	
22	MIKE WOODS *MARTY AMES	700 Lockyam	
23	*STU WEST	984 Kawasaki	
24	*GOFF WILBRAHAM *GORDON PLATT STEVE GROVES	750 Yamaha	* Denotes Reserve

Race 5

1.45 pm

Event 2

Final

8 Laps

(The 24 fastest riders from Races 1 and 2)

No.	Name	Machine	
		An.umos.ampas	
		and SUN, 8th, 8th an	1st £150 2nd £100
			3rd£70
	SAUGUST TOURT U	LE WEEKLY/YOXWW	4th£50 5th£40
	CAMPAGE MICHAEL ST	G X.III. M. A.	7 (11
			8th£10 Fastest Lap:
		125 JD Morbidelli	Rider
		······································	Time
		and the second and the second	Winner's Time:
	MINISTERNAL CANAL		
			Speed mph
	WOIT	SHOW ***PXHIB	
		3/1/26 Monday	
	aul BOWMAN	123 WCT Yamana	
		CHOTOARTVIC	
	ER'S MOUNT	ALIOUTA MOITA	
		124 Honde	
	DWERTICHER ON	C. C	
	SHKS SODVS	LANGE HARDALL	
		SARA; ALAGO	

Future Oliver's Mount Meetings...

COCK O' THE NORTH BRITISH CHAMPIONSHIPS
SATURDAY and SUNDAY, 5th and 6th JULY
RACING BOTH DAYS

INTERNATIONAL

FRI., SAT. and SUN., 5th, 6th and 7th SEPTEMBER M.C.N./DUCKHAMS SUPERBIKE CHAMPIONSHIP MOTOR CYCLE WEEKLY/FORWARD TRUST SIDECAR MOTOR CYCLE RACING VLADIVAR 250 SERIES RACING SATURDAY AND SUNDAY

PMH PROMOTIONS LTD

SHOW * EXHIBITION SPORTS EVENTS MANAGEMENT SPECIALISTS

SOLE CONTRACTORS FOR CIRCUIT PREPARATION AT OLIVER'S MOUNT

IF YOU ARE INTERESTED IN ADVERTISING ON THE CIRCUIT OR IN THE PROGRAMME, RING

0377 84727

Race 6 2.15 pm International Ultra-Lightweight Event 1 8 Laps

No.	Name	Machine	
26	BARRY SMITH	125 MBA	
30	BAM CARLSON	125 Morbidelli	
31	BERNARD MURRAY	125 Johnson Honda	
34	CLIVE HORTON	125 Morbidelli	
37	DEREK CHATTERTON	125 Honda	4
40	JAN BACKSTROM	125 Morbidelli	1st £100 2nd £75
41	PHIL MELLOR	125 Granby Honda	3rd£50
45	NEIL TUXWORTH	125 Honda	4th£40
50	TONY HEAD	125 Honda	5th£30
51	MICK CHATTERTON	125 Honda	6th£20
55	DONNIE McLEOD	125 Honda	7th£15
56	PETE BANKS	125 KB Honda	8th£10
57	NORMAN ROWLES	124 Honda	Fastest Lap:
62	BILL ROBERTSON	125 JD Morbidelli	Rider
69	BILL CLARK	125 Honda	Time,
70	STEVE BOYES	125 Honda	Speed mph
73	JOHN KERNAN	125 Spondon MBA	Winner's Time:
74	PETER HUBBARD	124 Honda	
78	TONY SMITH .	124 Morbidelli	Speed mph
79	ALEX BEDFORD	124 Honda	
80	DAVE BEDLINGTON	125 Yamaha	
81	*DAVID NOBBS	125 Honda	
84	BILL BOWMAN	123 WLT Yamaha	
85	DAVE BROWN	125 Honda	
89	CHRIS THORNE	125 Honda	
90	*MARTIN ELLIOTT	124 Honda	
96	*LEWIS GARDNER	124 Honda	
103	*RAY SWANN	125 Honda	
105	*PHIL NICHOLLS	125 Honda	
106	*MIKE BOOYS	125 Honda	
		* Denotes Reserve	

Congratulations to Ron Haslam and the Honda Britain racing team on winning the prestigious 1975 Forward Trust/Motor Cycle Weekly T.T. Formula I Championship, and to runner-up Graeme Crosby o his Moriwaki entered Kawasaki—all winning combinations.

You could be on to a winner too, with Forward Trust.

If you're thinking of buying a new bike or new clothing or accessories we could lend you just the amount of money you need. All we ask is that you're creditivorshy. And, being part of the Midland Bank Group, you'll find our terms are very competitive.

You'll also find we're very understanding when it comes to bikes. After all, if we weren't, we wouldn't be sponsoring championships.

Talk to your dealer if you'd like more information or write to us direct and we'll send you full details of all our schemes.

Applicable only to U.K. readous new in a complete to the control of t

Forward Trust

Yourbike, our finance. The winning formula.

Forward Trust Limited. Registered Office: 12 Calthorpe Road, Edgbaston, ningham B15 1QZ. Registered in England, No. 229341. A SUBSIDIARY OF MIDLAND BANK LIMITED

MOTOR CYCLE WEEKLY/ FORWARD TRUST **BRITISH TT FORMULA 1** CHAMPIONSHIP

There's a treat in store for race fans here at Scarborough this weekend . . . the chance to see what will possibly be the closest fought Forward Trust/'Motor Cycle Weekly' Formula One Championship round this season.

When the grid lines up for the opening round of the 1980 Championship on Sunday afternoon it will contain many of the world's top riders and over the twists and turns of the Oliver's Mount circuit there should be some close racing.

The big battle, of course, is the clash of the two Japanese giants, Honda and Suzuki. Lining up for Honda will be Mick Grant — always a favourite with the Scarborough fans — and double TT winner Alex George. Against them will be the Suzuki GB duo of New Zealander Graeme Crosby and Young American Randy Mamola.

Mamola could well produce the big shock \dots if he rides. He has entered for the meeting on the understanding that if he cannot acclimatise to the tight track, which is totally unlike anything he has ever ridden on before, then he will not race.

But Randy is a very quick learner, as he showed in the 500cc GPs last year and is not one to resist a challenge, and I confidently expect to see him lined up with the rest of the field at the start of the race.

The race will be a crucial one for Suzuki. Last year — their first in the Forward Trust/'Motor Cycle Weekly' series — they didn't do well and Honda's Ron Haslam romped to a Championship win with his only challenge coming in the form of Crosby, then mounted on a Machinell' Represent Moriwaki Kawasaki.

Crosby signed for Suzuki GB at the end of last year and since then has spent many weeks testing both GP and Formula One machines in Japan, and has been very impressed by both. Certainly he believes the Formula One bike is good enough to win the Championship and will be trying his hardest to give his title hopes a good start today.

But despite Suzuki's confidence that their GS1000 based hardware will be more than a match for the Hondas, there is still a question mark over their ability. There are no such doubts about the Hondas of Grant and George, who have both ridden the machines many times before and know them like the backs of their hands.

Experienced as they are, though, Mick and Alex will not have things their own way, even if the expected Suzuki challenge fails to materialise. There are a whole host of privately entered riders in the race who are perfectly capable of winning.

Top of that list must come the George Beale/Granby Motors pairing of Australian Graeme McGregor and former British Road Race Champion Roger Marshall, both riding Hondas.

The George Beale squad is the most professionally run private team in this country and their Formula One effort reflects that. Both machines use Peckett and McNab frames with highly tuned Honda engines and Peter McNab has left the Twickenham based frame builders to help Roger and Graeme take the title.

Roger's riding abilities are well known at Scarborough and there was no better example of that than when he won the 1979 Scarborough round of the Forward Trust/'Motor Cycle Weekly' Formula One Championship here last September. For Graeme the Formula One race is another challenge. It will be his first outing in the class, but if the success he has had in 250cc races since he came to this country last year is anything to go by then he could well win.

The other privateer to look out for will be Kent rider Barry Ditchburn. Barry is another star making his debut in the class and his machine will be the Moriwaki tuned Kawasaki used so spectacularly by Crosby last season. The machine has now been bought by Welsh dealer Gordon Pantall and completely re-fettled during the winter months.

Barry has been pleased with early tests of the bike, which as well as being fast was very reliable. He will be hoping for both qualities this year.

The Formula One class is one of the fastest growing and best supported in the country. The use of engines that are heavily based on their road-going counterparts with proper race chassis seems to be an ideal formula for producing close, exciting racing of which there has been plenty.

This is the second year that Forward Trust and 'Motor Cycle Weekly' have sponsored the Championship. Prize money has been increased from last season but the competition looks so tough that no one rider will have an easy job to take the title, and the cash.

There are ten rounds in this year's Championship starting with Scarborough this weekend. The other rounds are held at the major international meetings in this country, including, toughest of them all, the TT.

PETER SIMCOCK

Race 7

Forward Trust Limited Motorcycle Weekly

Motorcycle Weekly/Forward Trust British TT Formula 1 Championship (First Round)

Event 6

10 Laps

2.45 pm

No.	Name	Machine	
2	STEVE MANSHIP	1000 Pantall Moriwaki Kawas	aki
4	GRAEME CROSBY	997 Suzuki	
5	RANDY MAMOLA	997 Suzuki	1st£600
9	ALEX GEORGE	998 Honda	2nd £300
10	MICK GRANT	998 Honda	3rd£200
11	ROGER MARSHALL	997 Granby Honda	4th£150
12	BARRY DITCHBURN	1000 Kawasaki	5th£100
17	GRAEME McGREGOR	997 Granby Honda	6th£75
18	CHARLIE WILLIAMS	998 Honda	7th£60 8th£50
31	BERNARD MURRAY	998 Honda	9th£40
35	STEVE WARD	1000 Suzuki	10th£25
36	PETER SKOLD	1000 Suzuki	Fastest Lap:
45	NEIL TUXWORTH	997 Honda	Rider
49	CHRIS GUY	998 Honda	Time
52	JOHN HESELWOOD	998 Kawasaki	Winner's Time:
60	LES BURGAN	998 Kawasaki	
61	ASA MOYCE	998 Kawasaki	Speedmph
63	MICK HUNT	1000 Kawasaki	
64	MICK JAMES	1000 Hands Suzuki	
86	PAUL WILLIS	998 Kawasaki	
93	TONY HARRIS	997 Daryn Suzuki	
94	PHIL ODLIN	596 Luke Honda	
95	BILLY HILL	496 Kawasaki	
100	PETER CLIFFORD	980 Honda	
102	*TREVOR NATION	997 Duffield Suzuki	
104	*BERNARD FROST	998 Parkinson Kawasaki	
108	*GEORGE FOGGARTY	1000 Laverda	

* Denotes Reserve

INTERNATIONAL JUNIOR 8 Laps **Event 3** Machine No. Name 347 Yamaha 14 JEFF SAYLE 347 Pratt Yamaha STEVE TONKIN 15 347 Yamaha 347 Yamaha 18 CHARLIE WILLIAMS
19 EERO HYVARINEN 347 Yamaha
350 Yamaha 25 GRAHAM YOUNG 347 Yamaha 347 Yamaha 2nd£100 26 BARRY SMITH 347 Yamaha 28 LARS JOHANSSON 3rd.....£70 BERNARD MURRAY 4th.....£50 348 Maxton Yamaha 31 CHAS MORTIMER 5th....£40 350 Yamaha 32 6th.....£30 347 Yamaha 7th......£20 33 JOHN PACE 350 Yamaha PHILIPPE ROUSSELL 38 8th.....£10 39 TONY RUTTER 348 Yamaha 347 Maxton Yamaha Fastest Lap: PHIL MELLOR 44 ALAN STEWART 347 Mortimer Yamaha Time 348 Yamaha 347 Yamaha 347 Yamaha NEIL TUXWORTH 45 Speedmph 46 TONY ROGERS 50 TONY HEAD Winner's Time: 350 Clucas Yamaha BOB JACKSON 53 347 Handsworth Yamaha Speed mph LES BURGAN 58 60 347 Yamaha 347 Maxton Yamaha DENIS GALLAGHER 71 ANDY McGLADDERY 350 Yamaha 72 76 BILL INGHAM 347 Maxton Yamaha 82 *PETER HOWARTH 347 Yamaha 83 *DAVE CONNELL 347 Yamaha 84 *BILL BOWMAN 347 WLT Yamaha 87 *GLYN MARRIOTT 347 Yamaha 347 NLM Yamaha 92 *SIMON BUCKMASTER 98 *GRAHAM ATHA 347 Yamaha 347 Yamaha 101 *IAN HOGG 102 *TREVOR NATION 347 Duffield Yamaha

3.30 pm

Ride Right - Right!

meet Mick Grant world class rider

A WEEK IN THE ISLE OF MAN AT THE TT RACES FOR WINNERS OF L DRIVER COMPETITION AND OPEN COMPETITION

Scrutineers and Marshalls by courtesy of AUTO 66 and the ARMY DRIVING SCHOOL of Leconfield

Displays of numerous new machines. KAWASAKI Racing Machines on display

MODERN FILMS ★ Personal appearance by THE LADA VIKINGS Full information in 'The Hull Daily Mail' currently

COME ALONG AND SUPPORT THIS EVENT — FREE TICKETS TO THE SCARBOROUGH INTERNATIONAL IN SEPTEMBER (COMPETITION)

ERN BUSINESS SYSTEMS LTD 182 VICTORIA ROAD SCARBOROUGH · NORTH YORKS Y011 1SX

Telephone (0723) 71380/76571

Suppliers of all Office Equipment to the Circuit

Race 9

4.00 pm

INTERNATIONAL SIDECAR

Event 7

Second Leg

8 Laps

No.		Machine	
2	DICK GREASLEY	750 Bardsley Yamaha	
3	JOHN PARKINS DAVE SAVILLE	750 Sabre Yamaha	
13	SIMON BIRCHALL	750 rememb	
4	NIGEL ROLLASON	750 Barton Phoenix	
5	DAVE HOMER STEVE SINNOTT	700 Marksin Yamaha	
3	DAVE HALL	700 Warkshi Tamana	1st £100
6	STU PEARSON	750 Yamaha	2nd£75
	GRAHAME ROSE	750 Yamaha	3rd£50
7	GORDON NOTTINGHAM	700 Lee Yamaha	4th£40
8	STEVE JOHNSON FRANK ILLINGWORTH	750 Yamaha	5th£20
0	GUY MILLER	750 Yamana 86X.0	6th£10
9	BRIAN WEBB	700 Ham Yamaha	Fastest Lap:
	COLIN BOOKER		Rider
10	MAL WHITE	750 Rumbold Yamaha	Time
11	PHIL SPENDLOVE	700 Yamaha	Speedmph
11	DENNIS BINGHAM JULIA BINGHAM	700 Famana	Winner's Time:
12	EDDY WRIGHT	750 Yamaha	winner's rime.
	PAUL CRAIG		Salada
14	JOHN WATSON	750 Yamaha	Speed mph
15	BRIAN HOYLE	700 Windle Yamaha	
15	*JIM NORBURY BERNIE WRIGHT	700 Windle Yamana	The fastest drivers
16	*DAVE HALLAM	750 Windle Yamaha	over both legs will
	JOHN HAVERCROFT	CHARLE ACTOR	also receive — 1st £100, 2nd £75,
17	*BILL HALL	750 Granby Yamaha	3rd £50
10	PETER MINION	638 Parker Suzuki	
18	*FRED CORNBILL KEITH CORNBILL	638 Parker Suzuki	
19	*MICK HARVEY	750 Yamaha	
10	BRIAN ALFLATT	Tockside ataliabetal	
20	*MICK BURCOMBE	700 Rumble Yamaha	
	DEREK RUMBLE Jnr	750 B 11 5	
21	*RAY TOWSE MIKE WOODS	750 Rumble Euroyam	
22	*MARTY AMES	700 Lockyam	NATIONAL E
	ROY NORBURY	A 1000 Lule Holida	
23	*STU WEST	984 Kawasaki	
	GOFF WILBRAHAM	(000), sveida	
24	*GORDON PLATT	750 Yamaha	* Denotes Reserve
	STEVE GROVES		
			25

LOCKSIDE **MOTORCYCLES**

HONDA * YAMAHA * SUZUKI

For your next new or quality used machine

CONTACT THE EXPERTS

Also

Top Boxes, Clothing, Spares, Repairs

Crank Reconditioning and Reboring

and

RACING SPARES

* * * **RACING FAIRINGS**

* * *

SIDECAR FAIRINGS

View at Team Lockside Transporter in the Paddock today and at

LOCKSIDE MOTORCYCLES LEEDS ROAD · CASTLEFORD

Telephone 0977 550905

Race 10

INTERNATIONAL 1000

8 Laps Event 5

91.	19 0 62 51 2 32/0 57	2 06.0 88.98 2	1 63.0 76.89	08.88 0.04 1
No.	Name	Machine		
2	STEVE MANSHIP	750 Yamaha		
3	BOB SMITH	750 Yamaha		
6	STEVE PARRISH	750 Yamaha		
7	BARRY SHEENE	750 Yamaha		
8	DAVE POTTER	750 Yamaha		
9	ALEX GEORGE	750 Yamaha		1st £250
10	MICK GRANT	750 Yamaha		2nd £125
11	ROGER MARSHALL	750 Yamaha		3rd£100 4th£75
12	BARRY DITCHBURN	1000 Kawasak	. 8 74.39 to 74.29 to	5th£40
14	JEFF SAYLE	750 Yamaha		6th£30
16	KEITH HUEWEN	750 Yamaha		7th£20
17	GRAEME McGREGOF	997 Honda		8th£10
18	CHARLIE WILLIAMS	998 Honda		Fastest Lap:
20	GREG PRETTY	750 Yamaha		Rider
21	DAVE DEAN	750 Yamaha		Rider
22	STEVE HENSHAW	747 Coppock	Yamaha	Speed mph
24	BO GRANATH	747 Yamaha		Winner's Time:
35	STEVE WARD	749 Yamaha		
36	PETER SKOLD	1000 Suzuki		Speed mph
39	TONY RUTTER	748 Yamaha		.8 80.60 1 48.0 90.45
45	NEIL TUXWORTH	997 Honda		
47	PHIL HENDERSON	748 Yamaha		
49	CHRIS GUY	750 Yamaha		
52	*JOHN HESELWOOD	998 Kawasak	ci 20.05 i	
59	IAN BELL	746 Yamaha		
60	*LES BURGAN	998 Kawasak	2 03.0 70.64	
61	*ASA MOYCE	998 Kawasak	6 70.30	
	*MICK JAMES	1000 Hands S	uzuki	
75	*ANDY BOND	749 Yamaha		
-	*PHIL ODLIN	596 Luke Ho	nda	98.77 å.
CILL	*DAVE VALE			
	*GEORGE FOGGARTY	2 82 87		
61	20 d	* Denotes Reser	ve to see	

Lap Constant	868896		1 Lap	2.4136 miles
M. S. m.p.h.	M. S. m.p.h.	M. S. m.p.h.	M. S. m.p.h.	M. S. m.p.h.
1 40.0 86.89	1 53.0 76.89	2 06.0 68.96	2 19.0 62.51	2 32.0 57.16
.2 86.72 .4 86.54	.2 76.76 .4 76.62	.2 68.85 .4 68.74	.2 62.42 .4 62.33	.2 57.09 .4 57.01
.6 86.37	.6 76.49	.6 68.63	.6 62.24	.6 56.94 .8 56.86
.8 86.20 1 41.0 86.03	.6 76.49 .8 76.35 1 54.0 76.22	.8 68.52 2 07.0 68.42	.8 62.15 2 20.0 62.06	2 33.0 56.79
.2 85.86	.2 76.09 .4 75.95	.2 68.31 .4 68.20	.2 61.97 .4 61.89	.2 56.72 .4 56.64
.4 85.69 .6 85.52	.6 75.82	.6 68.09	.6 61.80	.6 56.57
.8 85.35 1 42.0 85.19	.8 75.69 1 55.0 75.56	.8 67.99 2 08.0 67.88	.8 61.71 2 21.0 61.62	.8 56.49 2 34.0 56.42
2 85.02	2 75.43	.2 67.78	.2 61.54	.2 56.35 .4 56.27
.4 84.85 .6 84.69	.4 75.29 .6 75.16	.4 67.67 .6 67.56	.4 61.45 .6 61.36	.6 56.20
.8 84.52	.8 75.03	.8 67.46	.8 61.28 2 22.0 61.19	.8 56.13 2 35.0 56.06
1 43.0 84.36 .2 84.20	1 56.0 74.90 .2 74.78	2 09.0 67.36 .2 67.25	.2 61.10	2 55 98
.4 84.03	.4 74.65 .6 74.52	.4 67.15 .6 67.04	.4 61.02 .6 60.93	.4 55.91 .6 55.84
.6 83.87 .8 83.71	.8 74.39	.8 66.94	.8 60.85	.0 00.77
.8 83.71 1 44.0 83.54 .2 83.39		2 10.0 66.84 .2 66.74	2 23.0 60.76 .2 60.68	2 36.0 55.70 .2 55.63
.4 83.23	.4 74.01	.4 66.63	.4 60.59	.4 55.56
.6 83.07 .8 82.91	.6 73.89 .8 73.76	.6 66.53 .8 66.43	.6 60.51 .8 60.42	.6 55.48 .8 55.41
1 45.0 82.75 .2 82.59	.8 73.76 1 58.0 73.64 .2 73.51 .4 73.39 .6 73.26 .8 73.14 1 59.0 73.02 .2 72.89 .4 72.77	.8 66.42 2 11.0 66.33 .6 66.03 .6 66.03 .2 12.0 65.83 .2 12.0 65.83 .2 4 65.63 .8 65.43 .2 13.0 66.33 .2 66.23 .4 66.13 .6 66.04 .6 65.04 .6 65.04	2 24.0 60.34 .2 60.26	2 37.0 55.34 .2 55.27
.2 82.59	.2 73.51 .4 73.39	.2 66.23	.4 60.17	.4 55.20
.4 82.43 .6 82.28	.6 73.26 .8 73.14	.6 66.03	.6 60.09 .8 60.01	.6 55.13 .8 55.06
.8 82.13 1 46.0 81.97	1 59.0 73.02	2 12.0 65.83	2 25.0 59.93	2 38.0 54.99
.2 81.82 .4 81.66	.2 72.89	.2 65.73	.2 59.84 .4 59.76	.2 54.92 .4 54.85
.6 81.51	.4 72.77 .6 72.65 .8 72.53 2 00.0 72.41	.6 65.53	.6 59.68	.6 54.79
.8 81.36 1 47.0 81.21	.8 72.53 2 00.0 72.41	.8 65.43 2 13.0 65.33	.8 59.59 2 26.0 59.51	.8 54.72 2 39.0 54.65
.2 81.05	.2 72.29	.2 65.23	.2 59.43 .4 59.35	.2 54.58 .4 54.51
.4 80.90 .6 80.75	.4 72.17 .6 72.05	.4 65.13	.6 59.27	.6 54.44
.8 80.60	.8 71.93 2 01.0 71.81	.8 64.94	.8 59.19 2 27.0 59.11	.8 54.37 2 40.0 54.30
1 48.0 80.45 .2 80.30	.2 71.69 .4 71.57	.2 64.75	.2 59.03	.2 54.24
.4 80.16	4 71 57	.4 64.65	.4 58.95 .6 58.87	.4 54.17 .6 54.10
.8 79.86	.8 71.34	.8 64.46	.8 58.79	.8 54.04
1 49.0 79.72 .2 79.57	.6 71.46 .8 71.34 2 02.0 71.22 .2 71.10	2 15.0 64.36 .2 64.27	2 28.0 58.71 .2 58.63	.2 53.90
.4 79.42		.2 64.27 .4 64.17 .6 64.08 .8 63.98 2 16.0 63.89 .2 63.79	.4 58.55 .6 58.47	23H / .4 53.83 .6 53.77
.6 79.28 .8 79.13	.8 70.76	.8 63.98	.8 58.39	.8 53.70
1 50.0 78.99	2 03.0 70.64 .2 70.53	2 16.0 63.89	2 29.0 58.32 .2 58.24	2 42.0 53.64 .2 53.57
.2 78.85 .4 78.70	.4 /0.41	.4 63.70	.4 58.16 I	.4 53.50
.6 78.56	.6 70.30 .8 70.18	.6 63.61 .8 63.52	.6 58.08 .8 58.00	.6 53.44 .8 53.37
.8 78.42 1 51.0 78.28	2 04.0 70.07	2 17.0 63.42	2 20 0 57 93	2 43.0 53.30
.2 78.14 .4 78.00	.2 69.96 .4 69.85	.2 63.33 .4 63.24	.2 57.85 .4 57.77	.4 53.18
.6 77.86	.6 69.74	.6 63.15 .8 63.06	.6 57.69	.6 53.11 .8 53.05
.8 77.72 1 52.0 77.58	.8 69.62 2 05.0 69.51	2 18.0 62.96	.8 57.62 2 31.0 57.54	2 44.0 52.98
.2 77.44	.2 69.40	2 18.0 62.96 .2 62.87	.2 57.47	.2 52.91 .4 52.85
.4 77.30 .6 77.17	.6 69.18	.4 62.78 .6 62.69	.2 57.47 .4 57.39 .6 57.32 .8 57.24	.6 52.79
.8 77.03	.8 69.07	.8 62.60	.8 57.24	.8 52.72

eters have WAMAHA peters have SUZUKI peters have FRANCE peters have SPARES peters have CLOTHING **Main dealers**

The complete service for a complete range

peters have HEIMETS peters have SPARES peters have CLOTHI

WATSON CAIRNS

LAP UP THE MILES ON A

Fabulous Moped to Superbike range

CB900 FZ CB 650 CX 500A **CB 250NA** XL 185SA XL 125SA **XL 100SA**

New CM 200TA New H 100A **CB 100N** New MB 50SA C 50ZZ

NEW ROBIN CARS, VANS & ESTATES

12 months Warranty on all these Honda models! TRIUMPH - VESPA - BSA

plus our range of Big Value used machines CASH ★ LOW DEPOSIT TERMS ★ PART EXCHANGES

ACCESSORIES

Fairings, Carriers, Tyres, Books, Batteries, Panniers, Tools, etc.

SPARES

Big Stocks of Honda, Vespa, Robin, Amal, Lucas, Wipac, etc.

MOTOR CLOTHING

One-piece Leathers, Barbour, Belstaff Suits, A.C.U. Helmets, Boots, Gloves, Goggles

LOWER BRIGGATE

LEEDS Telephone 458081

Yorkshire's leading Cycle and Motorcycle Specialists

Printed by E.T.W. Dennis & Sons Ltd., Scarborough